If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2-336x+150=0
a = 72; b = -336; c = +150;
Δ = b2-4ac
Δ = -3362-4·72·150
Δ = 69696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{69696}=264$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-336)-264}{2*72}=\frac{72}{144} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-336)+264}{2*72}=\frac{600}{144} =4+1/6 $
| 60+25x=55x | | 2+3n=28 | | 7-x/2=1 | | -3(7x-3)+4=-21x+13 | | y=50(1+25)^(5) | | |5−2x|+6=14 | | 6k=7/5 | | 8-(1+2x)=3 | | 8h-10h=+25 | | -6(1+7k)+7(1+6k=-2 | | 5x+8+3x+4=-40=4 | | 60+25x=55 | | 48=6w | | 3w^2+48=0 | | 8x^2-4=508 | | 3/4y=6/7 | | 7x=10x+20 | | 7m-25=4m | | (6/(x+1))−(5/2)=(2/(3x+3)) | | -2u+(-1)=(-13) | | -3z+9z+10=10+5z+3 | | 6/7h=2 | | 8(x−5)=7(x+5) | | 2x^2-5x=2.5 | | U(n)=9n-n^2 | | f-13=42 | | -5(p+3)=(7p-1)3 | | 2(8+x0=22 | | 36.25-d=-40.30 | | 2(8+x=22 | | 3a+1=(-5) | | 14/6=3x-3/x+2 |